Optical vortex knots – one photon at a time
نویسندگان
چکیده
Feynman described the double slit experiment as "a phenomenon which is impossible, absolutely impossible, to explain in any classical way and which has in it the heart of quantum mechanics". The double-slit experiment, performed one photon at a time, dramatically demonstrates the particle-wave duality of quantum objects by generating a fringe pattern corresponding to the interference of light (a wave phenomenon) from two slits, even when there is only one photon (a particle) at a time passing through the apparatus. The particle-wave duality of light should also apply to complex three dimensional optical fields formed by multi-path interference, however, this has not been demonstrated. Here we observe particle-wave duality of a three dimensional field by generating a trefoil optical vortex knot - one photon at a time. This result demonstrates a fundamental physical principle, that particle-wave duality implies interference in both space (between spatially distinct modes) and time (through the complex evolution of the superposition of modes), and has implications for topologically entangled single photon states, orbital angular momentum multiplexing and topological quantum computing.
منابع مشابه
1 1 N ov 2 00 4 Vortex Knots in Light
Optical vortices generically arise when optical beams are combined. Recently, we reported how several laser beams containing optical vortices could be combined to form optical vortex loops, links and knots embedded in a light beam (Leach et al 2004). Here, we describe in detail the experiments in which vortex loops form these structures. The experimental construction follows a theoretical model...
متن کامل1 1 Ja n 20 05 Vortex Knots in Light
Optical vortices generically arise when optical beams are combined. Recently, we reported how several laser beams containing optical vortices could be combined to form optical vortex loops, links and knots embedded in a light beam (Leach et al 2004 Nature 432 165). Here, we describe in detail the experiments in which vortex loops form these structures. The experimental construction follows a th...
متن کاملKelvin Waves and Dynamic Knots on Perturbative Helical Vortex Lines
Vortex lines are one-dimensional extended objects in three-dimensional superfluids. Vortex lines have many interesting properties, including Kelvin waves, exotic statistics, and possible entanglement. In this paper, an emergent ”quantum world” is explored by projecting helical vortex lines. A one-dimensional quantum Fermionic model is developed to effectively describe the local fluctuations of ...
متن کاملEvolution of vortex knots
For the first time since Lord Kelvin’s original conjectures of 1875 we address and study the time evolution of vortex knots in the context of the Euler equations. The vortex knot is given by a thin vortex filament in the shape of a torus knot Tp,q (p > 1, q > 1; p, q co-prime integers). The time evolution is studied numerically by using the Biot–Savart (BS) induction law and the localized induc...
متن کاملVortex knots in a Bose-Einstein condensate.
We present a method for numerically building a vortex knot state in the superfluid wave function of a Bose-Einstein condensate. We integrate in time the governing Gross-Pitaevskii equation to determine evolution and shape preservation of the two (topologically) simplest vortex knots which can be wrapped over a torus. We find that the velocity of a vortex knot depends on the ratio of poloidal an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016